

Deviations on a theme: peat patterning in sub-tropical wetlands

Christa Zweig

Research Scientist
Applied Sciences Bureau

Ridge and Slough Landscape

- I. How did the pattern develop?
- 2. Why is it changing?

Peat patterning mechanism

How did the pattern develop?

Peat accumulation mechanism

- Increased biomass production
 higher elevations = more
 vascular plant biomass =
 increased peat production
- Evidence for peat accumulation mechanism sharp microtopographical differences

Differential peat accumulation

Statistical evidence of sharp micro-topographical differences:

- Bimodal "frequency distribution of surface elements (vascular plant biomass or acrotelm thickness)" (Eppinga et al. 2008)
- Watts et al (2010)
 demonstrated elevation
 bimodality in 'conserved'
 RSL

Differential peat accumulation

Bimodality?

Elevation Yes (and no)

Biomass No (and yes)

Differential peat accumulation

No biomass bimodality

Two reasons

- I) Degradation
- Wet prairies—artifact of disturbance?

Differential peat accumulation

- 2. Differences in sub-tropical climate/ species pool
 - Disconnect between biomass production and peat accumulation (elevation)
 - Decomposition is the key
 - Serna et al. 2013(Everglades plant decomposition)
 -species not habitat or water depth

Different processes (species-based decomposition and temperature) are important for sub-tropical patterned peatlands than boreal peatlands

Why is it changing?

Local vs. landscape

Transition probability model of local dynamics

- Multistate models are a specialized population model that calculates transition probabilities between states
- Biomass/density data for repeated samples ~ 10 years apart
- Clustered data into states (ridge, wet prairie, slough)—not 'pure' clusters
- Local elevations = tailored hydrology for each point; and global hydrology (Site 65)
- 5, 15 year means for hydrology (minimum, maximum, amplitude (max-min))

Transition probability model of local dynamics

Best model:

- 15 year mean hydrologic amplitude
- 15 year average hydrologic maximum
- Elevation
- Peat depth
- Northing

Output:

- 1. Decadal transition probabilities
- 2. Targets for management
- 3. Predictive model

Probability of stability—amplitude

Probability of stability—depth

12

Dynamic stability based on transition probability model

- Digitized ridge/slough (1984)
- Loaded into CA software
- Kriged elevation map
- Applied MS model to pixels with custom hydrology—transition probabilities

- 50 separate runs (decadal)
- Averaged runs for rate of change and landscape
- Compared to 1995 imagery

Landscape expression of dynamic stability

How and why

Importance of species and decomposition in future RSL modeling

Local elevation is more important than landscape Long-term hydrology factors for landscape stability

- I5 year average amplitude
- 15 year average maximum depth

Now what?

Improve upon existing peat patterning models

Hydrologic targets for water management

Model landscape changes over time:

- Restoration scenarios
- Water management scenarios

